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NONUNIQUENESS OF COLLAPSE LOAD
FOR A FRICTIONAL MATERIALt

J. L. DAIS

Institute of Technology, University of Minnesota, Minneapolis, Minnesota 55455

Abstract--Nonuniqueness of collapse load for an isotropic frictional material with or without cohesion is con­
sidered, Examples are presented with solutions corresponding to two distinct collapse loads. A theorem is estab­
lished which provides lower bounds for a nonempty although small class of plane strain problems,

INTRODUCTION

FOR an isotropic frictional material with or without cohesion,t a continuous plane de­
formation occurs by shearing without volume change along planes on which the Coulomb
condition, r = C-(lN tan cp, holds. r, (IN, C and tan cp denote respectively magnitude of
shear stress on the plane, normal stress on the plane, cohesion and coefficient of friction
between adjacent surfaces of material points along the plane. In the stress boundary value
problem of Fig. 1, T" and vr are specified components of surface traction and velocity
respectively on the edges of a unit square. Obviously, homogeneously stressed deforming
solutions are possible if slip planes§ lie in either the horizontal or vertical directions; it
will be shown in Section 1 that these solutions correspond to distinct collapse loadsll S.
Furthermore, each of the solutions has a good physical interpretation for a certain value
of the unspecified vertical normal stress.

This mechanism for distinct collapse loads can also manifest itself in less academically
oriented problems. In Fig. 2 is shown an infinitely long grouser plate, which models a
bulldozer track. V is dead load/unit length. Homogeneously stressed solutions involving
horizontal plate translation with deformation occurring by shearing in the indicated shear
zone are possible if slip planes lie in either the horizontal or vertical directions; it will also
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FIG, l. Stress boundary value problem.

t The conclusions presented in this report were derived in the course of research sponsored in part by the
National Science Foundation under Grant GK1013 to Brown University and in part by the Division ofEngineer­
ing, Brown University.

t See Dais.[l].
§ A plane upon which 'r = C-I1N tan l{J is termed a slip plane.
II In the theory of rigid perfectly plastic solids, limit analysis theorems guarantee the uniqueness of a collapse

load for such a stress boundary value problem.
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be shown in Section 1 that each of these solutions corresponds to a distinct collapse load H.
Bekker [2J previously obtained the larger of these collapse loads by taking the slip plane
in the horizontal direction.

A traditional approacht for obtaining failure loads for soil mechanics problems is to
exhibit a criticalt equilibrium stress field, solve for the load equilibrating the stress field
and then simply term this load a "failure" load. Haythornthwaite [4J previously gave an
example exhibiting distinct critical equilibrium stress fields which equilibrate distinct loads.
Thus, Haythornthwaite showed that, for some problems at least, this traditional approach
does not determine the "failure" load uniquely. The present approach, however, demands
more of a load before it is termed a failure§ load. In addition to equilibrating a critical
equilibrium stress field, a collapse load must be associated with a deforming solution in a
theory involving material kinematics. This in fact is the usual meaning of the terms to
analysts in plasticity theory. An example of distinct collapse loads as so defined has not
been exhibited previously.
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FIG. 2. Section of infinitely long grouser plate.

It is not presently known whether or not there exists a class of problems for which the
collapse load is determined uniquely. Furthermore it is not known to what extent such a
class of problems would intersect problems of technological interest, say those in Soko­
lovskii. It is known that at least some of the "failure" loads in Sokolovskii are indeed
upper bounds on the collapse load as defined here; this follows from an upper bound
theorem of Drucker [5J by using a procedure of Shield [6].

In Section 2 a lower bound collapse theorem is established for the class of stress
boundary value problems for which any deformation is by definition restricted to occur in
an x, y plane and 4, the zth component of surface traction is specified wherever nz , the
zth component of the unit normal vector, is not zero. Also, the zth component of body
force must be zero. The statement of the theorem is: Let 0'* be an equilibrium stress field
satisfying stress boundary conditions and

2 cos ¢ [ '4. Jat - a~ < . - - sm ¢ + c cos ¢
1+ sm ¢ nz

where at ~ a~ ~ a~ are principal components. Then collapse cannot occur under loads
equilibrating 0'*. In Section 2 a lower bound, which is likely to be unrealistically low, is
found for the problem of the plane compressing of a right cylinder.

t See, for example, Sokolovskii [3].
t A state of stress at a point is said to be critical if T = (' - (J~ tan cp on some plane through the point.
§ Or synonomously, "collapse" or "limit" load.
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1. DISTINCT COLLAPSE LOADS

For the stress boundary value problem of Fig. 1, if a slip plane lies in the vertical
direction, then obviously (IN = 0 on the slip plane and the collapse load is given by
S = r = c. If a slip plane lies in the horizontal direction, then it follows from the Mohr
diagram of Fig. 3(a) that S = c cos2 cp/(1 +sin2 cp). For the problem of Fig. 2, if a slip plane
lies in the horizontal direction, then obviously H = c+ V tan cpo If a slip plane lies in the
vertical, then it follows from Fig. 3(b) that H = (c + V tan cp)/(2 tan 2 cp + 1).
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FIG. 3. Mohr diagrams.

2. A LOWER BOUND COLLAPSE THEOREM

For the plane straining of a body of frictional material in an x, y plane, the directions
of (J 1 and (J3 must lie in that plane, where (J 1 ;::: (J2 ;::: (J3 denote principal stress components.
Let £1 ;::: £2 ;::: £3 be principal strain rate components. Then deformation occurs with no
volume change and with £2 = O. The direction of £1 lies in the x, y plane and is inc'lined at
either +cp/2 or - cp/2 to the direction of (J 1 Take the zth component of body force to be
zero. Equilibrium equations then require that (Jzz does not vary with z in a deforming
region since the direction of (J2 lies in the z direction there. Thus, in a deforming region,
(J2 = (J2(X, y) = 4(X, y)/nAx, y).

The rate of doing work will now be computed for a motion for which £1 = rx. Let £11

and £33 denote respectively the normal strain rate component in the directions of (J 1 and
(J 3 respectively. Then

(1)

It follows from the Coulomb condition that

and it can easily be shown that

~ 11 = a cos cp } .

833 = -rx cos cp

(2)

(3)
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From (1}-(3) it follows that
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. 2ex cos cp .
aijCij=I' [-a3smcp+cCoscp].

+sm cp

Sin.:e "4/nz = azz ~ a3 where ex i= 0, there follows the relation

. 2ex cos cp [ "4. JaijCij ~ -1' --- sm cp +c cos cp .
+sm.cp nz

(4)

(5)

Let a* denote a stress field which satisfies stress boundary conditions, the Coulomb
limit condition, and the equilibrium equations. Let at I and a!3 denote respectively the
normal stress components in the direction of 61 and 63 respectively. Then

(6)

From relations (5) and (6) it follows that if

* * 2 cos cp [ "4. Jall-a33 < I' --smcp+ccoscp,
+sm cp nz

then

wherever 6 i= 0. Since (at I - a!3) :s; (at - an it follows that if

* * 2 cos cp ["4 . Jal -a3 < . - sm cp+c cos cp ,
I +sm cp nz

(8)

then (7) holds wherever i: i= 0. From a straightforward application of the principle of
virtual work, it follows for the stress boundary value problem that collapse cannot occur
under loads equilibrating a*, provided that a* satisfies (8).

delong [7] noted that if it could be shown that (7) holds, then a lower bound collapse
theorem follows. The present theorem is thus an extension of dejong's work in the sense
that a class of problems is specified for which (8) can be employed to insure that (7) holds.

Consider the problem of the compressing in plane strain of a right cylinder of unit end
area and centroidally loaded between two smooth flat rigid end platens. Take the lateral
surface of the cylinder to be traction free and then "4/nz can be taken to vanish in (8). If the
y axis is taken perpendicular to the cylinder ends, then the stress field [a~, a;, T~yJ =
[0, - 2c(1- sin cp), 0] imposes equality in (8). It follows that a lower bound on collapse loads
is given by pL = 2c(l- sin cp). It follows, using Drucker's theorem, that pu = 2c cos cp/
(I-sin cp) is an upper bound. The ratio of the bounds is pL/pU = (I-sin cp)2/COS cpo If
cp = 30°, then pL/PU = 0·29.

Acknowledgements-The aUlhor acknowledges Professor D. C. Drucker for guidance and criticism and Professor
W. H. Warner for criticism.
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A6cTpalcr-l1ccJlejl,yeTcli HeOjl,H03Ha'iHOCTb HarpY3KH pa3pyweHHlI, jl,Jlll H30TpoIIHoro B1I3KOCTHoro
MaTepHaJla, Cy'leToM HJlH 6e3 y'leTa CI.\eIIJleHHlI. )l.aJOTcli IIpHMepbI CpeweHHlIMH, KOTopble COOTBeTCTByJOT
jl,ByM pa3JlH'IHbIM Harpy3KaM pa3pyweHHlI. TIpeMaraeTcli TeopeMa, onpejl,eJlllJOwali HH:lKHble npejl,eJlbI jl,Jlll
HeIIycToro, HO jl,a:lKe MaJlOrO KJlaCCa 3ajl,a'l, xacaJOmHXCli IIJlOCKOH jl,eljJopMaI.\HH.


